
1

A Specialized Evolutionary Algorithm for
Generating Tight Single-Change Covering Designs

Matt Zykan, M.S. Computer Science UMR

I. ABSTRACT

A problem-specific evolutionary algorithm, a generic EA,
and a non-genetic heuristic method for generating tight single-
change covering designs are presented and compared. None of
these methods succeed in outperforming existing algorithms,
but their behavior does reveal properties of the problem’s
solution space.

II. INTRODUCTION

A. Problem Statement

A tight single-change covering design (TSCCD) is an or-
dered set of ordered sets of integers, or in other words, a
sequence of “blocks”. The size and complexity of a TSCCD
are determined by two parameters: v, the total number of
unique integers, or “symbols”, and k, the number of symbols
in each block. A valid TSCCD consists of a sequence of
blocks which satisfies three properties. First, each successive
block must have all symbols in common with the preceding
block except for any single symbol which must differ. This
is the “single-change” element. Second, all unique pairs of v
symbols must be represented, or “covered”, by the constituent
symbols’ appearance together in at least one block. Third and
finally, for each single changed symbol from one block to the
next, all pairs formed by the new symbol’s introduction to
the block must not be formed in any preceding block. This is
the “tight” element of the problem. TSCCDs are deceptively
complex constructions, and they are not easy to generate in
non-trivial sizes.

B. Performance Goal

The key objective of this work is the development of
an evolutionary algorithm which can generate TSCCDs with
significantly higher efficiency than existing methods. The
design will be considered successful if the EA is capable
of generating TSCCDs with (v = 20, k = 5) on common
computer hardware in a run time of less than 24 hours. To
date, solutions of this size have only been found using a
deterministic algorithm running for several weeks.

III. RELATED WORK

Straightforward though laborious techniques have been de-
veloped for generating TSCCDs by Preece et al. [1], [4] Their
work includes in-depth analysis of the mathematical properties
of the problem and its solutions, as well as several TSCCD
solutions of various sizes. A stochastic algorithm of the type
proposed here has little in common with the techniques used to

generate these solutions, so the EA developed relies on none
of these techniques. Philips [3] presents additional analyses
of solution properties. The most important information taken
from these papers is a table which appears in [1] listing values
of v and k for which a complete TSCCD can be found, up to
and including (v = 21, k = 6).

Evolutionary computing has been previously applied to
this problem in Johnson [2]. That approach is different from
the presented work in two important respects: it used multi-
objective algorithms, which will not be applied here, and the
genome there includes every symbol of every block of the
construction, whereas the presented work will store only the
single-change for each block. Storing only the single-change
dramatically reduces the search space by intrinsically satisfy-
ing the single-change property. At length, their algorithm was
able to produce a correct sequence for (v = 20, k = 5) up to
87% of the full solution length, with the remaining few blocks
left undefined.

IV. SPECIALIZED EVOLUTIONARY ALGORITHM

The MOEA presented in [2] was not designed specifically
for the TSCCD problem, that is, no problem-specific strategies
were used to generate the TSCCD results. The goal of this de-
sign is to improve on the MOEA’s performance by exploiting
specific characteristics of the problem.

Here, the genome of an individual is a sequence of single
changes, and this is accompanied by non-genetic information
required to interpret the alleles. Individuals in the population
may have genomes of various lengths, generally all shorter
than what is needed to form a complete TSCCD. Each gener-
ation, the algorithm creates a full-length TSCCD by determin-
istically choosing individuals as needed and appending their
alleles to the solution in progress as needed. Once complete,
the TSCCD is evaluated and the fitnesses of contributing
individuals are updated. Offspring are generated by taking
random subsequences of the composite genome. Rather than
search for a single individual with a full, correct solution in
its genome, this algorithm searches for a set of individuals
which can be assembled into a correct solution. This bears
resemblance to a Co-EA, but there are no Co-EA mechanisms
explicitly persued here.

A. Representation

The primary genome consists of an ordered set of single-
change “moves”, so-called because the construction of a
TSCCD in-order can be considered a kind of puzzle game. A
move is simply a transformation to be applied to a block, such



2

that a TSCCD with n blocks can be represented completely as
a single initial block and a sequence of n− 1 moves. A move
(gene) consists of a tuple (mi, ms), indicating the index into
the block and the symbol to be placed there, respectively. To
accompany the sequence of moves, each individual also stores
one complete block of symbols, the “lead-in”, indicating the
context for which the genome is appropriate. The lead-in is not
a part of the genome proper, as it does not have any genetic
operations applied to it. The utility of this lead-in is detailed
in section IV-B2. The population consists of individuals with
genomes of various lengths, with all genomes being no longer
than a complete solution. Individuals also carry their fitness
value and “relevance”, a value used for survivor selection as
detailed in section IV-B5.

B. Iteration

An iteration of the EA begins by constructing a single full-
length solution, first by generating a random initial block, and
then by choosing individuals from the population to append as
needed to build a full sequence of moves. Each move appended
to the solution is assigned a “score” (pnew − pdup − perr),
with the values p equal to the number of new pairs formed
and covered, the number of pairs formed that were already
covered, and the number of invalid pairs formed, respectively.
The only type of invalid pair possible here is of the form
(si, si), where a symbol is paired with itself. The score of the
entire solution is the sum of the move scores plus the number
of pairs in the initial block, kC2.

1) Choosing the Next Individual: Individuals are chosen
from the population by tentatively applying their sequences
of moves to the current construction and then choosing the
individual which promises to contribute most positively to the
total score. If several individuals promise to contribute the
same best score, the one with highest fitness is chosen. A
new individual must be chosen whenever the current individual
being applied has exhausted its sequence of moves. The last
individual to be chosen typically will not contribute its entire
genome, as construction is halted when the solution reaches
the known full length.

2) Applying an Individual’s Moves: Whether contributing
to the construction or being tentatively evaluated, an individ-
ual’s alleles are transformed according to the individual’s lead-
in block before being evaluated. Most of the time, the trailing
block of the construction is not identical to the prospective
individual’s lead-in. In these cases, a 1-to-1 mapping of the v
symbols is captured which transforms the lead-in block into
the construction’s trailing block. This same mapping is then
applied to the symbol ms of each move before it is added
to the construction. The individual’s genome is not modified
here, it is only transformed for application to the construction.

3) Updating Contributing Individuals: Once construction is
complete, the individuals which contributed have their fitness
and relevance updated. Fitness is based on a running average
of the total score contributed by the individual to constructions
for which it has been chosen. Relevance is simply an integer
indicating for which construction the individual was last
chosen. A tally is kept of how many constructions have been

performed, and contributing individuals have their relevance
value set to this tally. With this value, obsolete or irrelevant
individuals can be identified.

4) Creating Offspring: New individuals are formed from
random segments of the full solution. A random segment
is chosen by taking two uniform random values over the
indices into the full sequence of moves. The offspring’s lead-
in is set equal to the block which immediately precedes this
range. For example, if an offspring’s genome includes the
very first move, its lead-in will be the random initial block
which started the construction, furthermore, it is impossible
for the last block in the construction to become an offspring’s
lead-in. The lead-in and moves are taken directly from the
construction, where the contributing individuals’ moves have
been remapped. The offspring’s fitness is set according to
the scores for the moves which it includes, and its relevance
is set to the current construction tally. Finally, mutation is
applied. Each individual may be mutated in one of three ways:
a random move is omitted or added, a random move has its
row index randomly reset, or a random move has its symbol
randomly reset. One problem with this method is that the
initial fitness value of an individual is very unlikely to be
accurate, as it is calculated before mutation. This is somewhat
countered by the fact that the value will be corrected by
averaging in subsequent generations. Also, this fitness value
is not the most dominant selection criteria.

5) Survivor Selection: The number of individuals in the
population is constant, as is the number of offspring generated
from each construction. All offspring are added to the popu-
lation, and the population is then truncated to its proper size
by removing individuals with the smallest (oldest) relevance
values. This means that all offspring are almost guaranteed
to survive at least one generation, as long as the number of
offspring generated is less than the population size.

C. Termination

The algorithm terminates as soon as it performs a construc-
tion which results in no errors or duplicate pairs.

V. SIMPLE EVOLUTIONARY ALGORITHM

A simple EA was implemented for comparison to the more
complex approach. This simple EA uses a genome design
almost identical to the complex EA, with genes representing
moves. The main difference here is that all individuals have
full-length genomes, such that a complete TSCCD can be
constructed from one individual. Fitness is defined simply as
the number of pairs covered by the TSCCD generated from
an individual’s genome. Parent selection is fitness proportional,
survival selection is done by 3-tournament, and population size
and children produced per generation are fixed parameters.
Mutation is done by uniform random resetting, and crossover
is uniform random.

VI. IMPRACTICAL STOCHASTIC ALGORITHM: COLLAPSER

The third and final approach is not an evolutionary algo-
rithm, but is based on deterministically updating the weights
in weighted sets of moves. Each feasible block has a set of all



3

possible moves associated with it. The algorithm repeatedly
forms full-length TSCCDs by randomly choosing moves in
sequence from the weighted set of moves corresponding to the
lastmost block of the in-progress solution. The error (number
of repeated pairs) caused by each move is then used to nega-
tively adjust the weight of that move in its respective set. This
algorithm is impractical for solving hard TSCCDs because it
must store a weight for every possible move for every possible
block. Even using small data types to store the weights, it
is not practical to apply this algorithm to a TSCCD larger
than (v = 20, k = 5) without using specialized computing
hardware, as the memory requirement is simply too extreme.
Even so, this algorithm reveals important characteristics of this
problem’s solution space.

A. Stored Data

The Collapser algorithm stores many weighted sets of all
possible moves, one set for each feasible block. The number
of stored weight values is then the number of feasible unique
blocks times the number of possible moves, or (kv(k+1)). For
(v = 20, k = 5) this means there are more than 300 million
weights to be stored; this is very near the limits of a modern
workstation, making this the maximum practical TSCCD size
for this algorithm. An attempt was made to improve the
memory requirement by storing weights only for moves which
appeared at least once and thus had non-default weight values,
but the algorithm explores the solution space so wildly that
such data structures quickly inflate to their maximum size.

B. Iteration

Iteratively, the algorithm uses the weighted sets to randomly
build full-length TSCCDs. An initial block is generated, then
the first move is chosen from the set of moves corresponding
to that particular block. This forms a second, usually different
block, and the second move is then chosen from that block’s
corresponding set, and so on until a full length solution is built.
The solution is evaluated, and if it is correct the algorithm
terminates. Otherwise, for each move which caused errors the
weight of that move in its member set is reduced proportional
to the number of invalid pairs. Additionally, if the overall
solution is superior to the best solution found so far, all moves
involved, erroneous or not, have their weight updates positively
biased. With weights updated a new random construction is
attempted, and this process is repeated. This is not guaranteed
to converge to a correct solution, so the implementation is set
to reinitialize after a certain number of iterations without any
improvement on the best-yet solution.

VII. EXPERIMENTAL SETUP

Experimental results are limited as, unfortunately, this effort
very clearly failed to produce an algorithm which can exceed
the performance of existing methods. TSCCD parameters used
for comparison are (v = 12, k = 4). This problem is much
harder than those with k < 4, but it is not excessively difficult.

VIII. RESULTS

All three algorithms produced similarly suboptimal results,
leaving efficiency as the only interesting performance mea-
sure. The following figure compares all three algorithms. The
complex EA’s typical final result is shown, but its trend is not
shown due to difficulty in determining a fair “constructions”
metric. The complex EA requires several times the run time
of the two simpler approaches to achieve a similar result, so
the small portion of data should be considered far-far-right of
the shown horizontal range.

Figure 1. Average progress trends, showing one standard deviation

0 100000 200000 300000

Constructions

0.8

0.85

0.9

0.95

1

C
o

v
e
r 

R
a
ti

o

Collapser Simple Complex

IX. CONCLUSIONS

None of these methods can efficiently generate non-trivial
TSCCDs.

Ignoring the extreme memory requirement, the Collapser
method is the best of the three, achieving suboptima of
quality similar to the other two algorithms using far fewer
calculations. Of course, the memory requirements make this
approach impractical.

The primitive EA seems just as effective as the problem-
tuned EA, but it requires far fewer calculations to achieve
similar suboptimae. Precise comparison of efficiency is diffi-
cult because the problem-tuned EA uses much more fitness
evaluation and uses it in a unique way, but it is clear that the
simple EA is far more efficient.

The similarity of effectiveness across these three algorithms
suggests that the TSCCD solution space is very complex
indeed, having a great many suboptimal “traps”. This is
evident in the fact that the non-genetic algorithm can produce
TSCCDs which are more than 90% correct ad nauseam, at the
rate of several unique suboptimae per minute.

This suggests that any EA designed to generate TSCCDs
will benefit from as much flexibility in the solution space as
possible in order to facilitate escape from suboptimal traps.
The results here do not prove that the type of representation
used cannot be used to implement an effective TSCCD gen-
erator, but nor do they suggest any advantage to reducing the
solution space in this way.



4

X. RELEVANT PUBLICATIONS

REFERENCES

[1] D.A. Preece, Tight Single-Change Covering Designs. Utilitas Mathemat-
ica, 47: pp. 55-84 (1995)

[2] Matt David Johnson, The Stored Non-Domination Level Multi-Objective
Evolutionary Algorithm. (2007)

[3] N.C.K. Phillips, D.A. Preece, Tight single-change covering designs with
v=12, k=4. Discrete Mathematics, 197/198: pp. 657-670 (1999)

[4] N.C.K. Phillips, Finding tight single-change covering designs with v=20,
k=5. Discrete Mathematics, 231: pp. 403-409 (2001)


